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LETTER TO THE EDITOR 
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systems 
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lnstitut fir Theoretische Physik Ill, Heinrich-Heine-Universitat Diisseldorf, 
UniversitstsstraBe 1, 40225 Dusseldorf, Germany 

Received 6 September 1995 

Abstract. A massive dynamic field theory is employed to calculate the critical exponent z of 
the three-dimensional dilute king model to two-loop order without expansion in J4-d (with 
m u l l  z r 2.191). Applying the same method to the pure king model at three-Imp order we 
find z = 2.022 for d = 3 and z = 2.124 ford = 2. 

The most reliable field theoretic estimates of the dynamic critical exponent of the pure king 
model in d = 2 and d = 3 dimensions have been obtained by interpolating expansions in 
E = 4 - d and E’ = d - 1 to second order in E and E’, respectively [l]. The expansion 
around the lower critical dimension is based on a model describing the relaxation dynamics 
of an interface below Tc. Since up to now there is no field theoretic model for an interface 
of dilute king systems estimates of the dynamic exponent in the presence of impurities are 
less reliable. Moreover, in the case of the dilute king model the usual +expansion is not 
possible [ 2 ] .  An expansion in &to  second order yields [3] 

z = 2 + 0.336&(1 - 0.932&) + O(e3”) (1) 

with a relatively large O(e)-contribution. In [3] the &-expansion was improved by a 
Pad&Borel approximation for the Callan-Symanzik functions at three-loop order to obtain 
the three-dimensional estimate z rr 2.180. 

Prudnikov and Vakilov (Pv) have calculated z directly ford = 3, i.e. without expansion 
in powers of ,E [4]. However, they applied a massIess renormalization scheme which leads 
to infrared divergences in dimensions d < 4. At two-loop order the only divergence occurs 
at d = 2 but it is easy to check that the three-loop contribution (which was not considered 
by Pv) is divergent for d = 3. For the pure Ising model this divergence occurs at four-loop 
order. 

In this letter the dynamic exponent is calculated up to two-loop order in the framework 
of a massive field theory which is well defined for d = 2 and d = 3 at every order of the 
perturbation theory [5]. For the pure king model the calculation is extended to three-loop 
order and the results are compared with the exponents given in [I]. 

The purely relaxational dynamics of an order parameter field S(T, t )  in the presence of 
random impurities can be expressed in the form of the Langevin equation 

(2)  
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g a,s(r, t )  = --h [ ( r  + w - ) ) s ( r ,  t) + p-, 4 + m-, t )  
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where the Gaussian random field @(T) models the effect of impurities and r(r, t )  denotes a 
Gaussian random force. The random variables @ and { have zero mean and the respective 
correlations 

@(r)@(r') = fs(r - 2 )  (3) 

({(r, r)c(?-', t')) = 2AS(r - r')6(t - t'). 

and 

(4) 
Static properties of the model can be studied by means of the n-replica Hamiltonian (61 

where the components ( s ~ ] ~ = I . . . ~  correspond to different replicas of the system. At the end 
of the calculation one takes the limit n + 0. 

The renormalized field S R  = Zs-]''s, the coupling constants f~ and gR, and the mass m 
are defined by the renormalization prescriptions 

2 

r&(kI = 0); 
r ~ J ( ( p = 0 1 ; m , f R l g R ) = - 3 f R m f  

f R ,  gR) = gRmf 

where r," is a renormalized one-particle irreducible n-point vertex function calculated with 
the Hamiltonian (5). The function l-t denotes the O(n)-symmetric part of the four-point 
vertex function while rE8 is the anisotropic part. The renormalization scheme (6) was 
used by Mayer [7] to calculate the static critical exponents of the dilute king model in a 
four-loop approximation. 

To study the critical dynamics it is convenient to cast the Langevin equation (2) in the 
form of the dynamic functional 18-1 I] 

where we have already performed the average with respect to disorder [12]. The response 
field S has been introduced to average over the thermal noise. 

The computation of the dynamic critical exponent requires the introduction of a 
renormalized response field SR = Z,~ s and a renormalized Onsager coefficient h~ = 
(Z~/Z,)'/'1. The parameter Z: will be fixed by the condition 

-1/2- 

where GF, is the Fourier transform of the response function 

coupling coefficients: 

(7, t )  = (SR(T.  t ) S ~ ( 0 , 0 ) ) .  
To simplify the final expressions it is convenient to absorb a geometrical factor into the 

U = 3GegR U = 8Ge fR G, = (4n)-d /2r( (6-d) /2) .  (9) 
The CallanSymanzik functions 
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and the Wilson function 

have been calculated up to four-loop order in [7]. The dynamic critical exponent is the 
value of the function 

z b ,  U) = 2 +(XU, U) - q(u, u) ) /2  with :(U, U) = m- lnZ; (12) 
dm d l  f.8 

at the fixed point (U*, U,) defined by ,%(U,, U,) = p&.. U,) = 0. 
Condition (8) leads to 

(14) 
I 2  1 3 .  + ( l u 3  216 - &U% + ~ u U  - = U  )./(d) + O(four-loop) 

we obtain 

z(u, U) = 2 + $U + & ( 6 f ( d )  - h(d))u2 - & ( 2 f ( d )  - h(d))uu 

+&(611.(d) - h(d))u2 + &(24(d) - j(d))u3 + O(u3, u2u, uu2, u4). (15) 
The main difference between equation (15) and the result obtained by Pv is (the absence 

of) an i n k e d  pole at d = 2. The values of the functions f ( d ) ,  h(d), etc for d = 2.3.4 
are given in table 1. The two-loop integrals are defined by the equations 

The three-loop functions j(d) and 4(d) are more complicated expressions which are 
not shown here. In the minimal renormalization scheme [I31 they are replaced by 
jm = j(4) -4h’(4) = -1 and @.MR = @(4) - 12$‘(4) = -1.1367.. ., respectively. 

Table 1. The values of the functions occurring in L(U. U) (equation (15)) ford = 2, 3 and 4. 
If the minimal renormalization scheme (MR) is applied the functions have m be replaced by the 
numbers shown in the Im IOW. 

. .  . 
3 m  16/27 0.197472 0.174358 0.283714 
2 0.562605 0.458543 -0.0546090 0.137292~ 0.0299445 
MR 1 I -I In (4/3) - 1.136 76 

To determine the dynamic exponent one has to insert the fixed point into equation (15). 
For the dilute king model the fixed point has been computed by a four-loop expansion 
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in conjunction with a Pad.5-Bore1 approximation [71 with the result ur = 2.23611, 
U, = 0.683 88. This yields for the critical exponent in three dimensions: 

2.171 (oneloop) 
2.191 (two-loop). 

z(d = 3) = 

The difference between the values at one- and two-loop order may be used as a rough 
estimate of the accuracy of the result 

Inserting the fixed points ul(d = 3) = 1.42993 and ur(d = 2)  = 3.76704 [7] of the 
pure king model into z(u, 0) we get 

2.017 (two-loop) 
2.022 (three-loop) 

zl(d = 3) = 

and the two-dimensional estimate 
2.096 (two-loop) 
2.124 (three-loop) I zl(d = 2) = 

respectively. 
Due to a slow crossover observed in dilute king systems [14,3] it is difficult to determine 

asymptotic critical exponents by Monte Carlo methods. Heuer [14] finds z = 2.4 10 .1  for 
the three-dimensional system, while a Monte Carlo renormalization group approach [15] 
gave z = 2.20 f 0.07 (at low dilutions). Only the latter result is consistent with the 
estimates z Y 2.19 obtained above and z N 2.18 found in [3]. 

For the pure king model the three-loop approximations (20) and (21) are close to the 
estimates z~(d  = 3) = 2.019 and z ~ ( d  = 2)  = 2.126 of [l]. Li ef a! 1161 have measured 
the dynamic exponent for d = 2 in the initial stage of a relaxation process and found the 
result zl(d = 2)  = 2.1337 f 0.0041. A recent computer simulation [17] using the concept 
of ‘damage spreading’ gave z,(d = 3) = 2.032 f 0.004 and zl(d = 2) = 2.172 2c 0.006. A 
review of the Monte Carlo methods which have been employed to find estimates for 21 is 
also given in [18] and [191. 

It is a pleasure to thank H K Janssen for interesting discussions and St Theiss for a critical 
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